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SUMMARY 
A global method of generalized differential quadrature is applied to solve the two-dimensional incompress- 
ible Navier-Stokes equations in the vorticity-stream-function formulation. Numerical results for the flow 
past a circular cylinder were obtained using just a few grid points. A good agreement is found with the 
experimental data. 
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INTRODUCTION 

Most engineering problems can be currently simulated by finite difference and finite element 
methods. Usually, these methods require a large number of grid points for accurate results. More 
recently, spectral and pseudospectral methods have provided attractive techniques for the 
solution of smooth engineering problems, using only a few grid points. Amongst the family of 
these methods, the Chebyshev pseudospectral method is commonly used. This method usually 
requires a transformation between the physical space and the computational space since 
Chebyshev collocation points lie in the domain [l, - 13, leading to some inconveniences in use. In 
seeking a more efficient numerical method, the present authors have developed a method, based 
on the work of Bellman et a/.,' of generalized differential quadrature (GDQ), which can be 
considered as a global method. GDQ has overcome the difficulty of differential quadrature (DQ) 
in obtaining the weighting coefficients for the first-order derivative discretization with arbitrary 
distribution of grid points, and is easier to apply than spectral methods. It is shown in Reference 
2 that GDQ can be considered as the highest-order finite difference scheme, and both GDQ and 
Chebyshev pseudospectral method provide exactly the same weighting coefficients of the first- 
order derivative when the co-ordinates of grid points are chosen as the roots of a Chebyshev 
polynominal. This demonstrates that GDQ may have a considerable scope for development since 
it can be used with arbitrary distributions of grid points. In GDQ, the weighting coefficients of the 
first-order derivative are given by a simple algebraic formulation, and the weighting coefficients of 
the second- and higher-order derivative are determined by a recurrence relation. Some basic 
features of GDQ, such as the error estimations of the derivatives approximation and the influence 
of distribution of grid points on the stability, have also been analysed in Reference 2. The 
successful application of GDQ for the solution of a partial differential equation has been shown in 
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References 2 and 3 using considerably few grid points. It will be demonstrated in this paper that 
GDQ has potential as an attractive tool in CFD, especially in incompressible flow simulations. 

GENERALIZED DIFFERENTIAL QUADRATURE 

The differential quadrature technique, first presented by Bellman et d.,' approximates the partial 
derivatives of a function with respect to a space variable at a given discrete point as a weighted 
linear sum of all the functional values at all discrete points in the overall domain of that variable. 
Obviously, the key to this technique is: How to determine the weighting coefficients of any order 
partial derivative? For the weighting coefficients of the first-order derivative, Bellman et al. 
suggested two ways to carry this out. One solves a set of algebraic equations. Unfortunately, when 
the number of grid points is large, the matrix of this algebraic equation system is ill-conditioned 
and its inversion is difficult. This is probably one of the reasons that applications of this scheme so 
far use only 13 or lesss grid points. The other computes the weighting coefficients by a simple 
algebraic formulation, but with the co-ordinates of grid points chosen as the roots of a shifted 
Legendre polynomial. This means that if the number of grid points is specified, the distributions 
of grid points are the same for different physical problems. This may provide a major drawback 
and restrict the application of DQ. In order to overcome the drawbacks described above, the 
technique of generalized differential quadrature was then developed, based on the analysis of 
a polynomial vector space. 

According to Weierstrass polynomial approximation theorem, a continuous function in a 
domain can be approximated by an infinite polynomial accurately. In practice, a truncated finite 
polynomial may be used. Some methods, an example being the spectral method, have successfully 
applied the concept of the high-order polynomial approximation to the solution of a partial 
differential equation. Following this approach, it is supposed that any smooth function in 
a domain can be approximated by an (N- 1)th-order polynomial. It is easy to show that 
a polynomial of degree less than or equal to N - 1 constitutes an N-dimensional polynomial 
vector space VN with respect to the operation of addition and multiplication. Based on the analysis 
of a linear polynomial vector space, it has been shown that when the base polynomials are chosen 
to be xk, k=O, 1, . . , , N- 1, or the co-ordinates of grid points are chosen as the roots of 
a Legendre polynomial, GDQ provides exactly the same results as DQ. For generality, the 
Lagrange interpolation polynomials are chosen as the base polynomials, which result in a simple 
algebraic formulation for calculating the weighting coefficients of the first-order derivative, 
without any restriction on the choice of grid points. Furthermore, a recurrence relation was 
obtained for the determination of the weighting coefficients of the second- and higher-order 
derivatives. For the multi-dimensional case, each direction can be treated as in the one-dimen- 
sional case. It has been proved that GDQ can be considered as the highest-order finite difference 
scheme. Some basic features such as the error estimations, stability and convergence have also 
been analysed. For details, see Reference 2. Here, for brevity, only the results for the two- 
dimensional case are given. It is supposed that there are N grid points in the x-direction, xl, . . . , 
xN, and M grid points in the y-direction, y l ,  . . . , y,. Then the nth-order partial derivative of 
f ( x ,  y) with respect to x and the mth-order partial derivative off(x, y) with respect to y can be 
discretized at x i ,  yj as 

N 

ft'(Xi,yj)= 1 Wl",'f(xk,yj), n = l , .  . . , N-I, (14 
k = l  
M ... 

f:!") ( x i ,  yj)= 1 @ $ ) f ( x i ,  yk), m =  1, . . . , M - 1, 
k = l  

for i = l , 2 , .  . . , N ,  j = l , 2 , .  . . , M 
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where wi;), Giy) are the weighting coefficients to be determined as follows: 

where 

f o r i , j = 1 , 2  , . . . ,  N,but j# i ,  n=2,3  , . . . ,  N-1, 

for i , j= l ,  2 . .  . , M, but jZi ;  m=2, 3 , .  . . , M-1 

N 

wir )=-  w!;), i = l , 2 , .  . . , N, n = l ,  2 , .  . . , N-1, (4a) 

W p =  - 1 ii$’), i = l , 2 , .  . . ,  M, m = l , 2 , .  . . ,  M-1. (4b) 

j =  1, j # i  

M 

j = l , j # i  

It is clear from formulation (3) that the weighting coefficients of the second- and higher-order 
derivatives can be calculated from those of the first-order derivative completely. 

When the uniform grid is used, formulation (2) is reduced to 

(i - 1)!(N - i)! w(!)=(- l)i+j 
I J  Ax(i-j) ( j -  l)!(N-j)! 

for i , j= l ,  2 , .  . . , N, but j # i ,  

f o r i , j = l , 2  , . . . ,  M , b u t j # i ,  

whereA.x=xi-xi-,,Ay=yi-yi-,,and whenxi, whichisin thedomain [ 

xi=cos(i?r/N), i=O, . . . , N, 

formulation (2) is reduced to 

(5b) 

- 13, is chosen to be 
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where 

2 when i=O,  N, 
1 otherwise, 

E l =  [ 
which is exactly the same as that given from the pseudospectral Chebyshev m e t h ~ d . ~  

functional values in the overall domain in terms of the polynomial approximation, i.e. 
Finally, when the functional values at all grid points are obtained, it is easy to determine the 

where ri (x) ,  s j (  y )  are the Lagrange interpolation polynomials along the x- and y-direction, 
respectively. 

FLOW PAST A CIRCULAR CYLINDER 

The two-dimensional Navier-Stokes equations are used to simulate this problem: The version of 
vorticity-streamfunction formulation is written as 

o, + uw, + uwy = (a,, + o y y ) / R e ,  (10) 

(1 1) $xx + $yy = 0, 

with u = $ y  being the horizontal velocity component, u = - $, the vertical velocity component 
a= u y - u ,  the vorticity and Re the Reynolds number (based on the radius of the cylinder and the 
free-stream velocity Vm). In this notation, the subscripts x and y denote the derivative in the 
indicated direction. 

In numerical simulation, the physical domain can be mapped into the computational domain 
by the following transformation: 

x =eq cos t, y =eq sin 5 ,  (12) 
where the function eq assures an appropriately clustered grid point distribution close to the 
cylinder surface. Using (12), equation (10) and (1 1) can be transformed to 

e Z 9 w + $ p ,  - $ , q = ( w 5 5 + o , , ) / R e ,  (13) 

(14) $<< + $qq = e21w. 
To avoid having to deal with the large values of $ occurring in the far field and also to facilitate 

the numerical implementation of the far-field boundary conditions, the streamfunction 1(1 is 
decomposed into two parts such that 

$ =$in + Y ,  

where is chosen as the value of the inviscid flow, i.e. 

$in = (eq - e-q)sin 5 .  
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Thus, equations (13) and (14) can be reduced to 

e2'ko, + ( Y c  + u l )o , ,  - (Y,, + u l ) q  = (wrt + wtl,)/Re, 

Ycc + Y,,,, = e2q w,  

ul=(eq-e-l)cos < 
u1 =(eT+e-,,)sin t. 

with 

On the surface of the cylinder, the no-slip boundary condition gives 

at q=O, 1 Y=O, Y,,= -2sint  
w=Yq4 

and at infinity, the following boundary conditions are used: 

at q=co .  1 Y=O, Y,=O 
w = e-2q 'I-',,,, 

On the branch cut (from the rear point of the cylinder to the outer boundary), the periodic 
boundary condition is imposed. It is noted that there are two boundary conditions for Y and one 
boundary condition for w at each solid and infinity boundaries, and there is only one boundary 
condition for both w and Y at the branch cut line. For numerical simulation, the unbounded 
far-field boundary is truncated at a finite distance, urnax, which is far enough from the cylinder to 
allow the far-field boundary conditions to be satisfied accurately and is chosen here as 3.0. 

Using GDQ described above, all the spatial derivatives can be discretized as 
N N 

M M 
(y,,)ij= c w$' y i k ,  ( ' I- ' , ,q)ij= @:) Y i k ,  

k =  1 k =  1 

N N 

(w,)ij= 1 w!:' wkj, (wc<)ij= 1 wi:'wkj, 
k =  1 k =  1 

M M 
(0 1 )"= 13 c w'"' Jk Wik, (0 Vl )"= 1 1  c @lz'wik. 

k =  1 k =  1 

Substituting the above expressions into equations (1 5 )  and (16) yields a set of ordinary differential 
equations in time for w and a set of algebraic equations for Y. Similarly, the Neumann boundary 
conditions can also be discretized by GDQ. With N grid points in the <-direction and M grid 
points in the q-direction, after implementing all the boundary conditions for w and Y,  the 
resultant set of (N - 2) x (M - 2) ordinary differential equations for w are then solved by the 
four-stage Runge-Kutta scheme, and the set of (N-2) x ( M - 4 )  algebraic equations for Y are 
solved by a direct method of LU decomposition. 

For steady-state solution of this problem, the most sensitive parameter to check the accuracy of 
numerical simulation is the calculation of the parameters defining the structure of the wake 
behind the cylinder. The cylinder and the geometrical parameters of the closed wake are shown in 
Figure 1. Accurate simulations of the flow past a circular cylinder have demonstrated sensitivity 
to the boundary conditions imposed. The key factors may be the implementation of reasonable 
conditions at the far-field boundary and the boundary conditions at the surface of the cylinder. In 
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Figure 1. Geometrical parameters of the closed wake behind a circular cylinder 

the present computation, all the derivatives included in the boundary conditions for w and Y at 
the surface of the cylinder were treated by GDQ with ( M  - 1)th-order accuracy. At the outer 
boundary, the inviscid flow ( u  = 1, u = 0) was assumed to provide two boundary conditions for Y, 
where the Neumann boundary condition was treated with ( M  - 1)th-order accuracy, and the 
boundary condition for w was examined for two cases: in the first case, the outer boundary is 
assumed to be in the inviscid region, which yields w=O; in the other case, o is computed from 
w = e-2'J Y,,,,, which is discretized by GDQ with (A4 - 2)th-order accuracy. Numerical results for 
Re of 20 and 25 showed that both cases demonstrate nearly the same solutions. This further 
demonstrates that the outer boundary is in the inviscid region for these low Reynolds numbers. 
For the steady-state solution, the treatment of the boundary condition along the cut line was 
examined using two methods. One is to use the symmetric boundary conditions, namely, Y =0, 
w=O; the other is to use the patching technique, which enforces w, Y and their first-order 
derivatives with respect to the normal direction of the cut line to be continuous. Numerical 
experiment showed that both cases achieve nearly the same results but require different time steps 
for satisfying the given convergent criterion. Recommended is the use of w=O, Y=O at the cut 
lines since this requires less time steps, without losing accuracy. For the present computation, the 
outer boundary condition was set to the value of inviscid flow, the boundary condition on the cut 
line was set to w=O, Y =0, and the mesh size used is 25 x 21. Numerical results were obtained 
within 1 min CPU time on the IBM 3090 for each Reynolds number. Figure 2 shows the 
streamlines for Re=25, the values of streamlines being f 3.0, 5-2.0, f 1.0, k0.5, f015 ,  
- + 5 0 x  0.0. The symmetric eddy pair is clearly shown in this 
figure. Table I gives the details of the parameters of the wake eddy pair. Also included in Table I 
are the experimental It is seen from Table I that the present 
results are closer to the experimental data than those of Gresho et al., although these authors put 
the outer boundary further away from the surface of the cylinder than in the present work and use 
a larger number of grid points. The present results are, thus, more accurate than other numerical 
results, even though the outer boundary was closer to the cylinder surface and fewer grid points 
were used. It is seen that, on the one hand, GDQ appears to be a robust, efficient numerical 
technique; on the other hand, the treatment of the boundary condition on the surface of the 
cylinder may be critically important in numerical simulation. The major difference between the 
present approach and other numerical techniques is the treatment of the Neumann boundary 
conditions, with high-order accuracy in the present approach and low-order accuracy in other 
approaches. 

k5.0 x f 1 . 0 ~  

and other numerical 
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I I 

Figure 2. Streamlines past a circular cylinder, Re=25 

Table I. Geometric parameters of the closed wake behind a cylinder 

Re References L a b X1In.X ~ m a x  9% CD 

20 Experimental* 093 0.33 0.47 0.66 080 44.8" 2.1243 
Present 092 0.352 0.41 0.68 074 43.7" 2.1220 
Dennis et a[.* 0.94 43.7" 2.0450 

25 Experimental 1.21 0.44 0.51 0.75 0.85 48" 1.8176 
Present 1.21 0424 0.475 0.73 082 46.6" 1.8336 
Gresho et al.' 1.15 0.38 0.47 067 081 45" 2.2600 

* The drag coefficient CD is from Reference 5; other parameters are from Reference 6 with I=O, where 1 is the ratio 
between the cylinder and the tank diameters. 

CONCLUSIONS 

The global method of generalized differential quadrature was applied to simulate the incompress- 
ible steady flow past a circular cylinder. It has been demonstrated that accurate numerical results 
can be obtained by GDQ using considerably few grid points, and require much less storage and 
computational effort compared to the conventional low-order finite difference and finite element 
methods, in which a large number of grid points is usually used. For the simulation of the flow 
past a circular cylinder, two boundary conditions, which are from the two components of the 
velocity, are applied for the stream function at each of the solid and outer boundaries. Since all 
the spatial derivatives included in both the governing equations and the boundary conditions 
were discretized by GDQ with high-order accuracy, numerical results are very accurate com- 
pared to the experimental data. It is expected that GDQ may have extensive applications in CFD, 
especially in the incompressible flow simulations. 
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